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Abstract

Pattern Field Theory (PFT) does not assume time as a background dimension. Time
is defined as an emergent property of recurrence in admissible coherence structures. This
paper integrates Discrete Phase Closure, the Phase Alignment Lock (PAL), and coheron
cycles into a single framework that derives locked coherence periods of the form τ = N∆t.
The central normalization anchor π2/6 and the admissibility balance condition ℜ(s) = 1/2
are introduced as structural invariants of the Allen Orbital Lattice (AOL). A macroscopic
instance τ ≈ 71.2 ms with N = 6 is presented as a composite coheron coherence cycle. Time,
clocks, and persistence are shown to arise from closure and recurrence rather than from any
background geometry.
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Time as a Projection-Ordering Mechanism

Time Is Not Present in the Substrate

At the level of the Allen Orbital Lattice (AOL), there is no notion of time. The AOL defines
only a discrete space of admissible configurations, adjacency relations, and closure constraints.
It does not define change, flow, causation, or temporal order. It is a static relational substrate.

In particular, the two-dimensional AOL contains no intrinsic notion of “before” or “after”. It
supports the possibility of configuration, but not the concept of evolution. Any description that
presupposes time at this level is therefore category-invalid.

Time cannot be a primitive of the theory.

Emergence of Time from Stacking and Update Ordering

Time appears only when three structural elements are present simultaneously:

• Dominion stacking (projection depth),

• Resonance occupancy and reconfiguration,

• Phase Alignment Lock (PAL) coordination.

Once multiple stacked projection layers exist, and once resonant configurations can propagate
and reconfigure across those layers, a necessary ordering relation appears: some configuration
updates must occur before others. This ordering relation is not an added dimension. It is forced
by the dependency structure of projection updates.

Definition 1 (Time in Pattern Field Theory). Time is the ordered sequence of admissible
resonance reconfiguration states across stacked projection layers.

Equivalently, time is the bookkeeping index of projection update order. All update orderings
counted as time are restricted to admissible transitions under PAL, EQUI, and Fractal Budget
audits.

Discreteness of Time

Because:

• Projection stacking proceeds in discrete layers,

• PAL operates in discrete coherence cycles,

• Configuration changes occur in discrete admissibility transitions,

time is necessarily discrete at its root. Apparent continuity of time at macroscopic scales is a
smoothing artifact of dense update sequences, not a fundamental property.
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Constraint Accounting Across Scale (Fractal Budgets)

Discrete update ordering alone does not guarantee admissible persistence across scale. In Pattern
Field Theory, admissible evolution is additionally constrained by Fractal Budgets: scale-consistent
bookkeeping rules that limit how much unresolved mismatch, constraint load, and coherence
debt may be carried across nested sub-closures and stacked projection layers.

All projection update sequences discussed in this paper are implicitly audited against these
budgets. When a process exceeds its Fractal Budget at any nested level, global closure fails
and the system can sustain only local sub-closures or must reclassify into a new admissible
configuration class. This is the structural origin of layered recurrence and regime-dependent
time behavior.

The Arrow of Time

The directionality of time is not a thermodynamic postulate. It follows directly from:

• The inward-folding direction of projection,

• The non-invertibility of stacking operations,

• The fact that later projection states depend structurally on earlier ones.

Time has an arrow because projection has an arrow.

Time Dilation and Horizons

In this framework, what is usually called “the rate of time” corresponds to the rate at which
admissible resonance updates can propagate through stacked layers.

Regions of high lattice strain, high SRR, or near projection bottlenecks require more reconfigu-
ration steps per effective state change. This produces time dilation.

At horizons and singular projection limits, update propagation becomes asymptotically con-
strained. Since time is defined as update ordering, when update propagation cannot proceed,
time effectively stops. No additional postulate is required.

Relation to Higher Structural Dimensions

Since time is already a derived ordering construct, it cannot be the final structural dimension.
Time-indexed dynamics already contain degrees of freedom not expressible within time itself,
such as the comparison and integration of multiple possible trajectories and recursive reference
to system state.

This implies the existence of a further structural degree of freedom beyond time, but that layer
is not treated in the present paper.

Identity, Closure, and the Structural Origin of Time

One of the deepest unresolved problems in fundamental physics is the status of time. In classical
mechanics, time is an external parameter. In relativity, it becomes part of spacetime geometry.

© 2026 James Johan Sebastian Allen — Pattern Field Theory™ — 3



In quantum theory, it remains an external classical ordering parameter. In no major framework
is time itself derived.

Pattern Field Theory (PFT) inverts this order. It does not assume time. It assumes only
admissible structure and recurrence. Time is not a container in which things happen. Time is
the counting of recurrence in structures that are able to reassert their identity.

PFT begins from a pre-geometric substrate called the Metacontinuum. This substrate contains
no space, no time, no energy, and no geometry, but only unconstrained motion potential. Nothing
persists there. Persistence begins only when admissible closed recurrence structures form. The
minimal such structure is called a coheron: a closed, self-consistent recurrence in the space of
admissible configurations.

Let AOL denote the Allen Orbital Lattice, the discrete space of admissible configurations.
Evolution proceeds by discrete transitions between admissible states. We define a state transition
as:

S(t) → S(t + ∆t),

where ∆t is the characteristic relaxation or update interval of the local constraint-satisfaction
dynamics.

The admissible configuration space admits a discrete phase-sector structure induced by its
hexagonal and prime-seeded closure constraints. Let the phase sector index be:

k ∈ {0, 1, 2, . . . , N − 1}.

For the minimal AOL closure geometry, N = 6.

Identity is not defined by continuous existence. Identity is defined by closure: a structure is the
same if and only if it returns to the same admissible configuration class and phase sector.

We define identity recurrence as the minimal number of admissible transitions required for a
configuration to return to the same closure class and phase sector.

We define Discrete Phase Closure by the rule:

k(t + ∆t) = (k(t) + 1) mod N.

After m steps, the system is in:

k(t + m∆t) = (k(t) + m) mod N.

Identity recurrence requires returning to the same phase sector. The smallest positive integer m
such that m ≡ 0 (mod N) is m = N . Therefore, the minimal recurrence time is:

τ = N∆t.

This recurrence time is not a free parameter. Because N is fixed by structure and ∆t is fixed by
local relaxation dynamics, τ is a structural invariant. This is the origin of clocks, periodicity,
and stable coherence cycles in PFT.

As illustrated in Figure 1, six discrete phase sectors enforce that identity can only be reasserted
on a full closure cycle, yielding the minimal recurrence time τ = N∆t with N = 6 for the AOL
hex closure geometry.
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Figure 1: Hex-sector phase closure on the AOL. One complete loop corresponds to one coheron
recurrence cycle τ .

Remark 1. The diagram shows the central hexagonal AOL anchor, the six discrete phase sectors,
and the closed recurrence loop corresponding to one full coherence cycle τ .

Lemma 1 (Nested and Partial Recurrence Under Fractal Budget Constraints). When global
closure is not satisfied, recurrence does not vanish. Instead, admissibility constraints partition
into (i) a subspace that can still close and (ii) a residual mismatch that cannot be resolved within
the available constraint budget. The closing subspace produces a well-defined local recurrence
cycle, while the residual mismatch prevents full identity reassertion at the global level.

Formally, let the admissible configuration constraints at scale L be decomposed into a satisfiable
component and a residual component:

C(L) = Cclose(L) ⊕ Cres(L),

where Cclose(L) admits a closed phase-sector cycle and Cres(L) does not.

Then there exists at least one local recurrence period

τloc = Nloc∆t

generated by closure on Cclose(L), even when global closure fails on C(L). In general, different
nested sub-closures yield a family of local periods {τi} that need not be commensurate.

Thus, failure of global closure implies fragmentation of recurrence into layered sub-cycles rather
than disappearance of recurrence. The closure “bell” still tolls: recurrence continues to signal,
but it no longer certifies full identity of the composite structure.

Remark 2. In this regime, global identity is certified only on cycles that close across all nested
constraints; otherwise the system exhibits local coherence without global identity.

Fractal Budgets and Admissibility Audits

The phrase “constraint budget” used above is formalized in Pattern Field Theory as Fractal
Budgets. A Fractal Budget is the admissibility allowance available to a structure to maintain
compatibility across nested closure constraints over a full recurrence interval. Budgets are
scale-indexed: a composite closure must satisfy not only local closure constraints, but also the
budget compatibility conditions required to maintain coherence across all nested sub-closures for
the entire duration of the attempted global cycle.

Operationally, Fractal Budgets function as an audit layer alongside EQUI and PAL:
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• EQUI enforces global balance of admissible coherence accounting.

• PAL enforces phase-locked closure on full discrete sector cycles.

• Fractal Budgets enforce scale-consistent viability of that closure across nested constraint
layers.

When Fractal Budgets are exceeded, the system cannot commission global identity recurrence
even if local sub-closures remain well-defined. The observable consequence is layered recurrence:
stable local ticks without full composite identity reassertion.

We now define the Phase Alignment Lock (PAL) as the global admissibility constraint requiring
that composite coherence structures close only on full discrete phase cycles. PAL is not a force
and not a field. It is a structural admissibility rule that forbids partial-cycle identity and enforces
global coherence.

Coherons are therefore not objects in time. They are the mechanisms that create time by
repeatedly closing and reasserting identity. A coheron cycle is a unit of time.

The Central Anchor π2/6

The value π2/6 (the Basel constant) appears in PFT as the convergence and normalization
anchor of the AOL. It represents the finite bound of admissible cumulative curvature, resonance,
or weight over all coherence shells. In structural terms, it is the statement that total admissible
coherence content is finite and convergent.

The central hex of the AOL is assigned the value π2/6 as the normalization point of the lattice.
This is not numerology. It is the discrete analogue of a convergent spectral sum over admissible
modes.

The Balance Condition ℜ(s) = 1/2

The condition ℜ(s) = 1/2 is interpreted in PFT not as a number-theoretic curiosity but as the
structural balance line between divergence and collapse. It is the neutrality line of admissibility:
on one side patterns diverge, on the other they damp out. Only on the balance line can persistent
coherence exist.

In AOL terms, ℜ(s) = 1/2 expresses the condition that inward and outward coherence flux are
in exact structural equilibrium. This is why stable, non-divergent, non-collapsing coheron cycles
must lie on this line.

Remark 3 (Connection to Logarithmic Dimensional Shift). In the Logarithmic Dimensional
Shift (LDS) formulation, stacked projection depth can be represented as a helicoidal or lift-like
manifold where admissible evolution requires a neutrality of accumulation: neither runaway
divergence nor collapse to a fixed point. The balance condition ℜ(s) = 1/2 is the same structural
neutrality expressed in spectral form: it marks the admissibility line where coherence can persist
while remaining globally normalizable.

PAL, Coheron Cycles, and Created Time

PAL enforces that coheron assemblies can only close on full discrete phase cycles. Each closure
is one reassertion of identity. The counting of these closures is time.

Time in PFT is therefore not fundamental. Time is manufactured by coheron cycles under PAL.
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Proposition 1 (Time as Manufactured by Coheron Closure). Let a coheron be a minimal
admissible structure that closes only on full discrete phase cycles under the Phase Alignment
Lock (PAL). Then time does not exist as a primitive parameter of the substrate. Instead, time is
generated by the counting of identity reassertion events produced by coheron closure cycles.

Formally, let τ = N∆t be the minimal closure period of a coheron under discrete phase closure.
Then the sequence

{ nτ | n ∈ N }

defines the time parameter of the system. No additional temporal structure exists beyond this
recurrence index.

Therefore, time in Pattern Field Theory is not a background dimension but a derived ordering
index induced by admissible closure and identity recurrence.

A Macroscopic Example: τ ≈ 71.2 ms

In a class of large composite coheron systems, a characteristic relaxation time

∆t ≈ 11.87 ms

is observed. With N = 6, this yields:

τ = 6 × 11.87 ms ≈ 71.2 ms.

Here τ = N∆t is exact as a closure relation, while the numerical value is an approximate instance
measured or inferred for a particular composite coheron class.

This corresponds to a phase frequency of approximately 84.2 Hz. This is not a universal
microphysical constant. It is a macroscopic coherence cycle of a particular class of composite
coheron systems subject to PAL.

Worked Example: Layered Recurrence Without Global Closure

Consider a composite configuration composed of two interacting substructures A and B sharing
adjacency but not fully compatible closure constraints. Suppose the local AOL-admissible
dynamics permit closure of A on a 6-sector cycle, while B closes on an 8-sector cycle:

τA = 6∆t, τB = 8∆t.

If A and B were fully compatible under PAL at the composite level, global identity recurrence
would require a common closure period:

τglob = lcm(6, 8)∆t = 24∆t.

Now impose a finite constraint budget: the composite cannot satisfy the additional compatibility
conditions required to maintain coherent coupling for the full 24∆t interval. In this case, A still
reasserts local identity every 6∆t and B every 8∆t, but the composite does not reassert full
identity at 24∆t because the residual mismatch accumulates faster than it can be absorbed.

Here, “constraint budget” refers to the Fractal Budget limits defined above, which bound the
admissible mismatch that can be carried across the attempted composite closure interval.

Observable consequence: the system produces repeatable local “ticks” at 6∆t and 8∆t (layered
recurrence), while full composite identity either:

© 2026 James Johan Sebastian Allen — Pattern Field Theory™ — 7



• fails entirely (no stable τglob), or

• appears only intermittently when the residual mismatch accidentally cancels.

This illustrates the central point: recurrence can remain present and measurable even when
global closure is not achievable. The system continues to generate structured temporal signaling,
but only closures that span all nested constraints qualify as full identity recurrence under PAL.

Global identity requires not only a closure period but sufficient admissibility budget to maintain
compatibility across that period.

Worked Example: Voyager Heliopause Regime Transition as Non-Instantaneous
Recurrence

The crossings of the heliopause by Voyager 1 and Voyager 2 are not sharp phase events but
extended regime transitions inferred from plasma, magnetic field, and cosmic ray measurements
over finite intervals. There is therefore no physically meaningful single “timestamp” for either
crossing; instead, the events are identified by accepted transition dates in the heliophysics
literature.

According to NASA mission analyses, Voyager 1 is identified as having entered interstellar space
on 2012-08-25, and Voyager 2 on 2018-11-05. These dates mark the structural transition of
each spacecraft from heliospheric to interstellar plasma regimes, not instantaneous boundary
crossings.

The elapsed time between these two homologous regime transitions is therefore:

∆T = 2263 days.

For plain-text replication and search, we also write this as: DeltaT = 2263 days (computed from
the two published calendar dates above, without time-of-day).

DeltaT here is an interval between two published reference dates, not a claim of periodicity or a
conserved cycle.

This interval is not a clock period and not a fundamental constant. It is a macroscopic separation
between two realizations of the same structural transition class under different constraint histories
and projection paths.

In Pattern Field Theory terms, this is an example of recurrence without identity locking: the
same type of topological regime change (heliopause exit) occurs twice in the same solar structure,
but the global system does not return to an identical coherence state after a fixed cycle. The
recurrence exists at the level of event class, not at the level of full-system closure.

This places the heliopause transitions squarely in the regime described by the nested and partial
recurrence lemma: recurrence is present and observable, but global identity closure is not
achieved.

Worked Example: Atomic-Scale Recurrence in a Hydrogen-Like Transition

In Pattern Field Theory, bound-state spectra arise from admissible sub-closures of the AOL
whose shell-indexed weights decay at least quadratically. At atomic scales, this is reflected by
effective mode weights of the form
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wn ∝ 1
n2 ,

with n ∈ N the shell index of a local admissible sub-closure. Transitions occur when a bound
configuration reclassifies from shell n2 to shell n1 by resolving residual mismatch, emitting
a recurrence signal (photon) that carries away the mismatch budget required to maintain
admissibility.

Closure-to-transition mapping. Let τmicro = Nmicro∆tmicro be the minimal closure period of
the microscopic sub-closure under PAL (with Nmicro fixed by the local phase-sector structure). A
transition n2 → n1 induces a recurrence frequency determined by the difference in shell weights:

Definition 2 (κ calibration factor). κ is the local conversion factor that maps shell-weight
differences to an observed recurrence frequency in a specified projection channel. It is fixed
empirically for a given species and transition family and is not a universal constant.

For plain-text replication and search, we also write this as: f_n2_to_n1 = kappa*(1/n1^2 -
1/n2^2).

fn2→n1 = κ

( 1
n2

1
− 1

n2
2

)
,

Here κ is the admissibility-to-frequency proportionality set by the local relaxation scale ∆tmicro
and the coupling of the sub-closure to the electromagnetic projection channel. In PFT terms, κ
is not a universal constant; it is a substrate-to-channel conversion determined by the local AOL
spacing and PAL coordination at atomic scales.

Hydrogen-like example (Lyman-α analogue). Consider a hydrogen-like bound configura-
tion with a reclassification n2 = 2 → n1 = 1. The induced recurrence frequency is

f2→1 = κ

(
1 − 1

4

)
= 3

4 κ.

By calibrating κ once for a given species (e.g., from a single measured line), the theory then
predicts all other lines in the series by integer shell reclassifications:

fn→1 = κ

(
1 − 1

n2

)
, fn→m = κ

( 1
m2 − 1

n2

)
,

with n > m ≥ 1. This mirrors the quadratic decay law required for global normalizability and
ties spectral lines to admissible sub-closure differences rather than to continuum wavefunctions.

PAL and sector quantization. Microscopic PAL enforces that emission events occur at
closure-compatible update counts. Denote the micro-sector count by Nmicro. Then the admissible
emission times satisfy

tk ∈ { k τmicro | k ∈ N }, τmicro = Nmicro∆tmicro.

The observed line widths can be modeled as including a contribution from residual mismatch
budgets and local SRR (constraint thickness), expressed as layered sub-closures (cf. nested
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recurrence lemma). This is compatible with conventional broadening mechanisms, but adds a
structural parameterization for regime-dependent thickness of the transition zone.

Test protocol (falsifiable).

• Calibration: Fix κ from one measured line of a hydrogen-like species.

• Prediction: Compute all series frequencies via integer shell reclassifications using the
quadratic law above.

• Line widths: Model widths by SRR-dependent partial closure budgets; predict systematic
broadening with increasing constraint thickness.

• Falsifier: If, under fixed κ and AOL/PAL admissibility, measured series frequencies generically
deviate from the integer shell law

∆f ̸∝
( 1

m2 − 1
n2

)
,

or if widths do not correlate with SRR-controlled partial closure, the PFT recurrence account
fails for that species or regime.

Interpretation. This construction treats atomic spectra as signals of admissible reclassification
between shell-indexed sub-closures on the AOL. The quadratic law is the same structural decay
required for global convergence (Appendix on π2/6), and PAL ties emission timing to discrete
closure counts. The series structure is thus lattice recurrence bookkeeping, not a primitive
continuum postulate.

Testable Predictions

Because PFT defines time as discrete recurrence under closure constraints, it implies observable
signatures that differ from continuous-time assumptions. The predictions below are stated in
falsifiable form.

Prediction 1: Sector-Quantized Recurrence in Discrete Substrate Simulations

If the AOL closure geometry enforces a minimal phase-sector count N = 6, then any implemented
AOL-like update system that respects the same adjacency and closure constraints must exhibit
recurrence periods that are integer multiples of N under stable locking. Concretely, when a
configuration returns to the same closure class, it must do so with

τ = N∆t with N = 6,

and composite recurrence must appear at integer multiples of τ .

Test. Implement an AOL state-update automaton with admissibility constraints and measure
recurrence return times across many initial conditions.

Falsifier. Stable recurrence occurs generically with N ≠ 6 under the same hex closure constraints,
without introducing additional structure.
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Prediction 2: Discrete-Step Time Dilation Under Update Bottlenecks

If effective time corresponds to update propagation through stacked layers, then regions of higher
constraint density must exhibit slower effective recurrence rates. The dilation should appear as
stepwise changes in recurrence timing under increasing constraint load, because the underlying
update process is discrete.

Test. In controlled recurrence systems (digital lattice simulations or engineered constraint
networks), increase constraint density or stacking depth and measure the effective recurrence
interval τ ′. Look for piecewise behavior consistent with integer additional update steps per
closure.

Falsifier. Effective recurrence slows only as a smooth continuum under discrete update rules,
with no stepwise structure across regimes.

Prediction 3: Locking Failure Thresholds Under Excess Mismatch

PAL is defined as a closure admissibility rule. Therefore, there must exist measurable mismatch
regimes where partial-cycle identity fails and the system must either (i) reconfigure into a new
closure class or (ii) lose stable recurrence.

Test. In recurrence simulations, increase mismatch between substructures while holding adja-
cency constant. Measure the point at which closure ceases to occur on full cycles.

Falsifier. Closure remains stable under arbitrarily large mismatch without forced reclassification
or recurrence loss.

Prediction 4: Basel-Normalized Mode Weighting as the Weakest Convergent Bound

If the weakest admissible decay law that still yields finite total coherence weight is quadratic,
then mode-weighting schemes near

wn ∝ 1
n2

should be the boundary between stable normalizable coherence and divergence in any shell-
indexed recurrence hierarchy. This is the operational content of assigning π2/6 as a normalization
anchor.

Test. Construct shell-indexed recurrence hierarchies and vary decay exponents wn ∝ n−α.
Identify the transition between global normalization and divergence.

Falsifier. Stable normalizable coherence persists generically for α ≤ 1 under the same recurrence-
shell construction, without additional constraints.

Prediction 5: Time-Freezing as Propagation Failure in Projection Limits

Since time is update ordering, any regime that blocks update propagation through the stack
must produce an effective time-freezing limit. The signature is asymptotic failure of closure
completion rather than continuous slowing without bound.

Test. In stacked update systems, impose projection bottlenecks and measure closure completion
rates across depth.

Falsifier. Closure completion remains regular and depth-invariant even when propagation is
structurally blocked.
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Meaning

Without closure there is no identity. Without identity there is no recurrence. Without recurrence
there is no time.

Time is not where reality happens. Time is what coherent reality does. Coherence is commissioned
only when closure survives PAL locking and remains within EQUI and Fractal Budget limits
across all nested constraints.
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Summary Table: Recurrence anchors across scales

Anchor Scale Mechanism Recurrence
signature

Test protocol Falsifier

Atomic (hydrogen-
like)

Micro Admissible sub-closures
with quadratic shell
weights (wn ∝ 1/n2)
under PAL

fn→m = κ
(

1
m2 − 1

n2

)
;

emission times at
tk = k τmicro

Calibrate κ on one line;
predict series; model
widths via
SRR-dependent partial
closure

Series deviates
generically from integer
shell law; widths not
correlated with SRR

Composite PAL
cycle (71.2 ms)

MacroscopicHex-sector discrete
phase closure (N = 6)
with local update
interval ∆t

τ = N ∆t; observed
τ ≈ 71.2 ms with
∆t ≈ 11.87 ms

Measure stable locking
across configurations;
verify integer multiples
of τ

Stable locking at
non-hex sector counts
(N ̸= 6) without
additional structure

Voyager he-
liopause transi-
tions

Cosmic Regime transition
recurrence without
global identity locking;
nested sub-closures
under constraint
budget

Event-class recurrence
(two exits) separated by
∆T = 2263 days; no
fixed τglob

Cross-compare
multi-instrument
transition intervals;
identify layered
signatures

Sharp, instantaneous
boundary timestamps;
identical global closure
cycle across events

Table 1: Three recurrence anchors demonstrating PFT’s closure-based time across micro, macro,
and cosmic regimes. Each anchor specifies a mechanism, a measurable signature, an operational
test, and a falsifier.
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Glossary

• AOL: Allen Orbital Lattice, the admissible configuration space.

• Coheron: Minimal closed admissible recurrence structure.

• PAL: Phase Alignment Lock, the global closure admissibility constraint.

• Phase Sector: One step in a discrete closure cycle.

• Identity Recurrence: Return to the same closure class and phase sector.

• Metacontinuum: Pre-geometric null substrate.

• SRR: Structural Regime Resolution, a measure of constraint thickness relative to domain
scale, used to classify regime transitions in PFT.

• LDS: Logarithmic Dimensional Shift, a projection-depth formulation used in the PFT
stacking model.

• EQUI: Global balance and conservation bookkeeping constraint system used to audit
admissible coherence accounting in PFT.

• Fractal Budgets: Scale-consistent constraint accounting limits that determine whether
composite closures can maintain compatibility across nested sub-closures over a full
recurrence interval.

• ∆T / DeltaT: A macroscopic elapsed interval between two reference dates (calendar-based
in this paper).

• κ: A local proportionality mapping admissibility-weight differences to an observed recur-
rence frequency in a specified channel.

• τmicro: Minimal closure period of a microscopic admissible sub-closure under PAL.

• ∆tmicro: Local microscopic update interval for the sub-closure dynamics.

• Nmicro: Micro-scale phase-sector count for the relevant sub-closure.
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Appendix: Why π2/6 Appears as a Structural Convergence Bound

Consider a layered shell structure of admissible coherence modes indexed by n ∈ N. Let the
admissible contribution of shell n to total coherence weight scale as:

wn = 1
n2 .

This is the minimal decay rate that ensures:

• Outer shells contribute ever less

• Total coherence remains finite

• The structure is globally normalizable

The total admissible coherence weight is then:

W =
∞∑

n=1

1
n2 .

This is the classical Basel sum: ∞∑
n=1

1
n2 = π2

6 .

In PFT terms, this means that any lattice whose admissible modes decay at least quadratically
with shell index is globally convergent and admits a finite total coherence normalization. The
appearance of π2/6 is therefore not mystical. It is the universal constant associated with the
weakest admissible decay law that still permits a finite total coherence bound.

Assigning π2/6 to the central anchor of the AOL therefore fixes the global normalization scale of
admissible coherence in the weakest, most permissive, but still convergent way.
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Document Timestamp and Provenance

This document is part of Pattern Field Theory (PFT) and the Allen Orbital Lattice (AOL).
It defines the Phase Alignment Lock (PAL) constraint and specifies methods and replication
procedures used by subsequent papers in the series. Pattern Field Theory™ (PFT™) and
related marks are claimed trademarks. This work is licensed under the Pattern Field Theory™
Licensing framework (PFTL™). Any research, derivative work, or commercial use requires an
explicit license from the author.
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