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Abstract

This paper presents a structural account of morphogenesis in Pattern Field Theory (PFT).
Form is not attributed to material substrates, but to the geometry of admissible pattern
space. Physical structures arise by committing two-dimensional pattern fields through a
one-dimensional depth-binding operation. We introduce the 2D pattern layer, the +1D depth-
binding operator, a minimal family of pattern operators, and the mechanism of layered locking.
We show how regeneration and fibrosis correspond to shallow versus deep locking regimes of
the same structural process. QuantaHex six-fold lifting fractal flowers are used as the primary
demonstration of pure pattern geometry, followed by biological and material realizations
including reaction-diffusion fields, zebrafish striping, and chameleon and cephalopod skin
patterning. The framework is geometric, operator-based, and substrate-independent.



Foundational Principle

Proposition 1 (Form is not a substrate property). The form of patterns in nature is not
explained by the substrate. It is explained by the geometry of admissible pattern space. The
substrate can only realize form by expressing two-dimensional pattern fields through successive
one-dimensional depth bindings into persistent structure.

The substrate provides resolution, stability limits, and failure modes. It does not generate form.
Form is generated in pattern space and committed to reality through depth-binding.

Three-dimensional objects are not primitive. They are the accumulated result of repeated depth
commitments applied to two-dimensional pattern logic.

The 2D Pattern Layer

Definition 1 (2D Pattern Space). The 2D pattern layer is a pre-geometric relational space
in which only adjacency, routing, and combinatorial structure exist. There is no metric, no
persistence, and no cost of change.

In this layer, patterns can be reorganized freely. This layer hosts all generative morphogenetic
logic.

Morphogenics Model

Definition 2 (Pattern state). A pattern state is a labeled relational field P = (V, E, o) where V
are sites, E are admissible adjacencies, and o : V — X assigns local pattern values (chemical
class, pigment class, phase, or symbolic state).

Definition 3 (Pattern operator family). A morphogenic step is an operator Ok acting on P,
such that Pt +1 = Oy, (P;), where Oy is one of: shift, drift, overlay, merge.

Definition 4 (Admissibility functional). Let J(P) be an admissibility functional. A step is
admissible iff T (Piy1) < J(P) + €, for a small tolerance € determined by substrate resolution
and noise.

Proposition 2 (Geometry-first morphogenics). If admissible transitions are determined by
J and operator availability, then pattern family selection is determined by the geometry of
admissible pattern space, not by substrate identity.

Pattern Operators

The following operators act purely in the 2D pattern layer:

¢ Pattern shift - local rerouting of adjacency
e Pattern drift - slow cumulative rerouting under constraints

o Pattern overlay - superposition of multiple pattern fields
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e Pattern merging - unification of previously distinct routes into a single structure

These operators generate pattern families, but do not create persistent objects.

Depth-Binding and Identity

Definition 5 (Depth-Binding). Depth-binding is the operation that commits a two-dimensional
pattern route into a persistent identity by adding a one-dimensional binding dimension.

Depth is not spatial extension. It is commitment, memory, and irreversibility.

Definition 6 (Identity-Route). An identity-route is a 2D pattern route that has been bound
through depth and therefore persists under perturbation.

Without depth-binding, nothing exists as an object.

Admissibility and Cliffs

Definition 7 (Admissibility Margin). Let m(z) be a scalar coherence or admissibility margin
over the 2D domain. A configuration is admissible where m(z) > 0.

Definition 8 (Cliff). A cliff is a region where the admissibility margin changes sharply, charac-
terized by large |Vm(z)|.

Cliffs are boundaries between stable and unstable structure. They appear at growth fronts,
material interfaces, and repair boundaries.

QuantaHex and Six-Fold Lifting Flowers

Six-fold symmetry is a fundamental attractor for constrained two-dimensional space filling.
Under recursive branching on a hexagonal adjacency field, self-similar six-petaled flower trees
appear.

These structures are not material. They are pure pattern geometry. They demonstrate that:

e Complex form arises from adjacency rules
e Symmetry emerges from admissibility constraints

e The same pattern family appears in fractals, reaction—diffusion systems, and biological tissues

These flowers serve as the canonical opening example of morphogenics in PFT: a visual proof
that adjacency plus admissibility is sufficient to generate stable, repeatable form families.

The remainder of this paper treats these flowers not as illustrations but as the first concrete
instance of a general mechanism. We now isolate the engine itself: the minimal operator system
on a six-neighbor adjacency substrate that generates the entire flower family under admissibility
constraints.
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Figure 1: Two six-fold lifting flower variants demonstrating pure pattern geometry under identical
adjacency rules.

The QuantaHex Operator System (Canonical Morphogenic En-
gine)

We define QuantaHex as the reference morphogenic system. The systems discussed in this paper
(six-fold lifting flowers, six-fold constrained Julia fields, reaction—diffusion, zebrafish striping,

photonic lattice skin patterning, crystal tilings) are obtained from QuantaHex by projection,
continuum approximation, or substrate-specific deformation of admissibility.

Canonical pattern state
Definition 9 (QuantaHex state). A QuantaHez state is a pattern state Q = (Vhex, Fhex, ),
where Viex s a finite or countable set of sites embedded in a hexagonal adjacency graph, Fhex C

Vhex X Vhex 15 the siz-neighbor adjacency relation, and o : Viex — % assigns a local occupancy,
phase, or branch-state label.

The graph (Vhex, Fhex) is not a metric surface. It is a pure adjacency substrate with fixed six-fold
local symmetry.

Operator set

Definition 10 (QuantaHex operator family). The QuantaHex evolution is generated by a finite
operator family Oqu = {S, D, 0, M, B}, where:
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Figure 2: Two six-fold lifting flower variants demonstrating pure pattern geometry under identical

adjacency rules.

S (shift): local rerouting of adjacency occupancy

D (drift): biased cumulative application of S under constraints

O (overlay): superposition of multiple pattern fields on the same adjacency graph

M (merge): fusion of compatible branches or routes

B (branch/lift): creation of a new admissible successor site from an active tip

Definition 11 (QuantaHex evolution). The canonical QuantaHex evolution is Qi1 = Ok, (Q4),
with O, € Oqn.

Admissibility functional

Definition 12 (QuantaHex admissibility). Let Jqu(Q) be an admissibility functional defined

as jQH(Q) = )\lq)coll(Q) + )\Q(I)overlap(Q) + >\3(I)C0ng(Q) + )\4‘I)curv(Q); where the terms penalize
respectively: collisions, overlaps, congestion, and excessive curvature or branching density.

Definition 13 (Admissible step). An operator application is admissible iff Jqu(Qi+1) <
Jqu(Qt) + €.

Canonical status

Proposition 3 (QuantaHex is the canonical morphogenic engine). QuantaHez is the minimal
discrete operator system that:
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Enforces six-fold local symmetry,

Generates branching, tip-splitting, banding, and lobe formation,

Produces the flower-family attractor class under admissibility constraints,

Supports both geometric growth and structural locking regimes via repeated application of B.

Proposition 4 (All other systems are derived). The following systems are obtained from
QuantaHez by representation change:

o Siz-fold constrained Julia fields: complex-plane representation + projection to hex adjacency

e Reaction—diffusion systems: continuum approximation of drift and overlay under Laplacian
coupling

e Zebrafish and biological patterns: noisy, growth-coupled implementations of D, O, and M
o Crystals and tilings: QuantaHex with branching suppressed and deep binding enforced

Proposition 5 (Canonical memory). Iteration depth in QuantaHez is structural memory. The
visible geometry is the history of operator application.

Figure 3: Two six-fold lifting flower variants demonstrating pure pattern geometry under identical
adjacency rules.

Six-fold symmetry is a fundamental attractor for constrained two-dimensional space filling.
Under recursive branching on a hexagonal adjacency field, self-similar six-petaled flower trees
appear.

These structures are not material. They are pure pattern geometry. They demonstrate that:
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e Complex form arises from adjacency rules
e Symmetry emerges from admissibility constraints

e The same pattern family appears in fractals, reaction—diffusion systems, and biological tissues

These flowers serve as the canonical opening example of morphogenics in PFT.

Figure 4: Two six-fold lifting flower variants demonstrating pure pattern geometry under identical
adjacency rules.

Evidence Plates

Layered Locking

Definition 14 (Layered Locking). Let B be the depth-binding operator. A layered lock is a
sequence 10 = P and T4+ = Bg(I(Z)), where each application adds a new depth commitment
to the same identity-route.

Definition 15 (Admissible Perturbation Set). Let A®) be the set of perturbations under which
I remains coherent.

Lemma 1 (Monotonic Restriction). A > AW > ..o D AL Each added layer reduces
freedom and increases persistence.

Definition 16 (Prime Lock). A prime lock is an irreducible anchor in the binding graph.
Removing it causes nonlocal coherence failure. It cannot be replaced by a set of weaker anchors.

Layered locking is reinforcement, memory accumulation, and structural hardening.
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Figure 5: Julia-to-flower morphogenics under six-fold constraint - Plate 1.

Turing Pattern Simulation (Zebrafish-like Stripes)

YA T HOS M OAA LYY

Figure 6: Striping morphogenics as constrained pattern field realization - Plate 2.

© 2026 James Johan Sebastian Allen — Pattern Field Theory™ — 8



Regeneration versus Fibrosis

Definition 17 (Total Lock Depth). Let D = >k, dy be the total committed depth of an identity.
Definition 18 (Flexibility). F(D) = H%' More depth implies less reversibility.

Definition 19 (Regeneration). Regeneration is repair by shallow layered locking, where D
remains small enough that bindings can be reversed or remodeled and the original pattern can be
restored.

Definition 20 (Fibrosis). Fibrosis is repair by deep layered locking, where D becomes large and
the structure becomes rigid and irreversible.

Proposition 6 (Regeneration vs Fibrosis). There exists a structural threshold Dy such that:

o If D < D, the structure remains remodelable

o If D > Dy, the structure becomes permanently locked

This is a geometric and structural transition, not a biochemical one.

Interpretation
Regeneration corresponds to few anchors and soft cliffs. Fibrosis corresponds to many anchors

and hard cliffs. Both are expressions of the same layered locking mechanism.

Applications

Reaction-Diffusion and Field Patterns

Turing-like systems explore the same 2D pattern space and converge to the same attractor
families: spots, stripes, hexagonal tilings.

Zebrafish as a Discrete Morphogenic Operator System

Zebrafish stripe formation is a concrete instance of geometry-first morphogenics. The skin is
modeled as a 2D pattern state P = (V, E, o) where V are cell sites, E are local adjacencies, and
o(v) assigns each site a pigment class (e.g. melanophore, xanthophore, iridophore).

Empirically observed stripe rearrangements correspond to repeated applications of local pattern
operators:

Shift: local displacement of pigment boundaries

Drift: slow boundary motion under neighbor pressure

Overlay: superposition of signaling fields on pigment layout

Merge: annihilation or fusion of stripe segments

Thus the developmental sequence is a discrete operator evolution: Pjy; = Oy, (P;)
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Admissibility Constraint
Not all operator applications are allowed. Let J(P) be an admissibility functional encoding:

e mechanical stress limits
 signaling compatibility
o packing and boundary energy

A transition is realized iff J(Pit1) < J(P;) + €.
This explains why zebrafish patterns:

e converge to a small family of stripe configurations
o repair locally after injury

e but do not explore arbitrary arrangements

Geometry-First Consequence
The stripe family is determined by:

o adjacency geometry
e operator set

o admissibility landscape

and not by the chemical identity of the pigments themselves.

Different species realize different substrates, but the same morphogenic geometry.

Relation to Depth-Binding

During development, successive stripe refinements are shallowly depth-bound. In adulthood,

the pattern becomes deeply bound and only partially remodelable, placing zebrafish between
regeneration and fibrosis regimes in the layered locking model.

Skin patterning systems implement real-time pattern operators on layered structures:

o Zebrafish striping follows reaction—diffusion and boundary constraints
e Chameleons adjust lattice spacing in layered photonic structures

e Cephalopods perform active pattern overlay and shift using stacked control layers

All are expressions of 2D pattern logic realized through depth.

Materials and Crystals

Crystals, foams, and honeycomb cores are physical realizations of 2D tilings lifted through
thickness. Reinforcement and fatigue are cases of layered locking and layered failure.
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Figure 7: Mandelbrot set projected onto the Riemann sphere. This demonstrates 2D pattern
fields embedded into curved manifolds without changing the underlying pattern logic.

Conclusion

Form is generated in two-dimensional pattern space. Reality is produced by committing these
patterns through one-dimensional depth. Layered locking explains growth, repair, memory,
rigidity, and failure. Regeneration and fibrosis are not different mechanisms. They are different
depth regimes of the same structural process.
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Glossary

e 2D Pattern Space - Pre-geometric relational pattern layer

¢ Depth-Binding - Commitment operator that creates persistence
e Identity-Route - Depth-bound pattern route

o Layered Locking - Repeated depth-binding reinforcement

e Prime Lock - Irreducible binding anchor

o CIiff - Sharp admissibility boundary
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Document Timestamp and Provenance

This document is part of Pattern Field Theory (PFT) and the Allen Orbital Lattice (AOL). It
specifies the morphogenetic framework based on two-dimensional pattern space, depth-binding,
and layered locking. Pattern Field Theory™ (PFT™) and related marks are claimed trademarks.
This work is licensed under the Pattern Field Theory™ Licensing framework (PFTL™). Any
research, derivative work, or commercial use requires an explicit license from the author.
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