

Geometry, Metrics, and Emergent Spacetime

Expanded Depth Series: Paper 12

James Johan Sebastian Allen
PatternFieldTheory.com

December 20, 2025

Abstract

This paper reconstructs geometry, metric structure, and spacetime as emergent descriptions arising from constraint adjacency and reconfiguration structure on the Allen Orbital Lattice. No manifold, coordinate system, or spacetime metric is postulated. Distance, dimensionality, curvature, and causal structure are shown to arise as statistical summaries of constraint geometry under coarse resolution.

Riemannian and Lorentzian geometries are recovered as effective continuum limits. Their breakdown at quantum and cosmological scales is explained as a direct consequence of finite lattice resolution and basin structure.

1 Orientation and Dependency

This paper depends on the results of Papers 1–11 of the Expanded Depth Series.

Paper 11 established fields and forces as emergent descriptions of constraint accessibility. The present paper addresses the geometric layer: how distance, dimension, metric tensors, and spacetime arise without assuming a background manifold.

No spacetime, metric postulate, or coordinate system is assumed at the foundational level.

2 Why Geometry Is Not Fundamental

In conventional physics, geometry is introduced axiomatically through a manifold $(\mathcal{M}, g_{\mu\nu})$ on which physical fields are defined. Distances, angles, and curvature are primitive.

Pattern Field Theory inverts this order.

The Allen Orbital Lattice is combinatorial and relational. It admits adjacency and recurrence, but no intrinsic metric.

Definition 1 (Constraint Geometry). *Constraint geometry is the relational structure defined by PAL-compatible reconfiguration adjacency on the Allen Orbital Lattice.*

All geometric quantities must therefore be derived, not assumed.

3 Emergence of Distance from Constraint Adjacency

Let p and q denote two coheron configurations. Define $N(p, q)$ as the minimal number of PAL-compatible reconfiguration steps connecting them.

At fine resolution, $N(p, q)$ is discrete and path-dependent. At coarse resolution, an effective distance may be defined:

$$d_{\text{eff}}(p, q) = \langle N(p, q) \rangle,$$

where the average is taken over admissible reconfiguration pathways.

Proposition 1. *Effective distance increases monotonically as constraint adjacency density decreases.*

Distance is therefore not fundamental; it is a statistical property of structural accessibility.

4 Dimensionality as an Emergent Property

Dimensionality in Pattern Field Theory is not imposed. It arises from the local branching structure of constraint adjacency.

Definition 2 (Effective Dimensionality). *The effective dimensionality at a lattice region is the scaling exponent relating accessible reconfiguration pathways to resolution depth.*

Regions with isotropic adjacency scaling recover integer dimensions. Regions near basin boundaries exhibit fractional or anisotropic effective dimensions.

This explains dimensional reduction phenomena without invoking extra dimensions or compactification.

5 Metric Tensor as a Statistical Descriptor

In General Relativity, geometry is encoded by the metric tensor $g_{\mu\nu}$.

In Pattern Field Theory, the effective metric emerges as a second-moment descriptor of constraint adjacency density:

$$g_{\mu\nu}^{\text{eff}} \sim \langle \Delta x_\mu \Delta x_\nu \rangle,$$

where Δx_μ label coarse-grained reconfiguration directions.

Proposition 2. *The effective metric encodes constraint accessibility anisotropy, not pre-existing spacetime structure.*

Metric smoothness is therefore a consequence of large-scale averaging.

6 Curvature Without Manifolds

Curvature in General Relativity measures deviation from flat spacetime.

In Pattern Field Theory, curvature measures non-uniformity in constraint adjacency and basin saturation.

Let $\rho(p)$ denote local coheron density. Then curvature corresponds to gradients in ρ and constraint loss:

$$\mathcal{K} \sim \nabla^2 \rho.$$

This reproduces gravitational lensing and geodesic deviation as emergent effects of constraint geometry.

7 Recovery of Lorentzian Spacetime

Lorentzian signature arises when constraint adjacency separates into one dominant ordering direction and multiple transverse accessibility directions.

This ordering direction corresponds to irreversible reconfiguration ordering (cf. Paper 7), yielding an effective causal structure.

Lemma 1. *Lorentzian signature emerges when one constraint direction exhibits monotonic accessibility loss while others remain symmetric.*

Time is therefore not a dimension but an ordering artifact.

8 Breakdown of Spacetime at Extremes

At very small scales, constraint discreteness invalidates smooth metric approximations. At cosmological scales, basin transitions and saturation invalidate global manifold structure.

This explains:

- quantum gravity breakdowns,
- singularity avoidance,

- horizon anomalies,
- cosmological acceleration without dark energy.

Spacetime fails precisely where it should.

9 Relation to Einstein Field Equations

Einstein's equations,

$$G_{\mu\nu} = 8\pi G T_{\mu\nu},$$

arise as effective balance relations between constraint curvature and coheron density:

$$G_{\mu\nu}^{\text{eff}} = \kappa \Sigma_{\mu\nu}.$$

Predictive equivalence holds wherever spacetime geometry is a valid approximation. Divergence occurs only outside GR's domain of validity.

10 Summary

This paper has shown that:

- Geometry is emergent, not fundamental.
- Distance arises from constraint adjacency statistics.
- Dimensionality is a resolution-dependent property.
- Metric tensors summarize accessibility anisotropy.
- Curvature reflects constraint density gradients.
- Spacetime is an effective, limited description.

11 Closure

Pattern Field Theory replaces spacetime with structure.

Geometry is not where physics happens. Geometry is how structure appears when resolution is limited.

This completes the reconstruction of geometry and spacetime as emergent descriptions within Pattern Field Theory.