

Fields, Forces, and Emergent Interaction Laws

Expanded Depth Series: Paper 11

James Johan Sebastian Allen
PatternFieldTheory.com

December 20, 2025

Abstract

This paper reconstructs fields and forces in Pattern Field Theory as emergent descriptions of constraint geometry rather than fundamental entities. Fields are defined as coarse-grained descriptions of constraint accessibility, while forces arise as gradients in reconfiguration permissibility under Phase Alignment Lock.

Interaction laws are shown to be statistical regularities of structural reconfiguration, not primitive causal rules. This framework recovers the predictive structure of classical and quantum field theories without introducing mediating entities, force carriers, or action-at-a-distance.

1 Orientation and Dependency

This paper depends explicitly on the results of Papers 1 through 10 of the Expanded Depth Series.

Paper 10 resolved locality and nonlocality as properties of structural separation and shared closure. The present paper explains how traditional field and force concepts emerge as descriptive layers when constraint geometry is viewed at coarse resolution.

No fields, forces, or interaction laws are assumed at the foundational level. All such notions are derived as effective descriptions of reconfiguration structure on the Allen Orbital Lattice.

2 Fields as Coarse-Grained Constraint Geometry

In Pattern Field Theory, a field is not a physical substance distributed through space.

Definition 1 (Structural Field). *A structural field is a coarse-grained representation of constraint accessibility over regions of the Allen Orbital Lattice.*

At fine resolution, constraint geometry is discrete and combinatorial. When averaged over many lattice regions or configurations, regular patterns of accessibility emerge. These patterns are what are conventionally described as fields.

Field values do not exist at points. They summarize how readily reconfiguration can occur in a region under given boundary conditions.

3 Forces as Reconfiguration Gradients

Forces do not act on objects in Pattern Field Theory. They describe directional bias in structural reconfiguration.

Definition 2 (Structural Force). *A structural force is a gradient in constraint accessibility that biases the direction of permissible reconfiguration sequences.*

What appears as acceleration or attraction corresponds to preferential paths in constraint geometry where PAL-compatible reconfiguration is more readily achieved.

Forces therefore encode asymmetry in accessibility, not transmission of influence or exchange of entities.

4 Emergent Interaction Laws from Constraint Statistics

Classical interaction laws present themselves as compact mathematical relations governing forces and motion. In Pattern Field Theory, such laws are not fundamental prescriptions but statistical regularities arising from repeated structural reconfiguration under fixed boundary conditions.

At the microscopic level, each reconfiguration event is governed solely by Phase Alignment Lock and basin compatibility. However, when constraint accessibility is sampled across large ensembles of configurations and averaged over coarse depth resolution, stable regularities emerge.

Definition 3 (Emergent Interaction Law). *An emergent interaction law is a statistically stable regularity in constraint reconfiguration behavior under fixed structural conditions.*

These laws do not govern the system. They summarize how the system behaves when observed at limited resolution. The explanatory direction is therefore reversed: structure gives rise to laws, not the other way around.

5 Relation to Classical Field Theory

In classical physics, a field is represented as a function defined on a background spacetime manifold,

$$\phi : \mathbb{R}^{3,1} \rightarrow \mathbb{R},$$

with dynamics determined by partial differential equations derived from action principles.

Pattern Field Theory assumes no background spacetime. Nevertheless, an explicit correspondence can be established.

Let $\mathcal{A}(x)$ denote the coarse-grained constraint accessibility associated with a lattice region x . Conservation of reconfiguration possibility implies effective continuum relations of the form

$$\nabla \cdot \mathcal{A}(x) = J(x),$$

where $J(x)$ represents effective sources corresponding to coheron density gradients and basin saturation.

Classical field equations therefore arise as continuum limits of discrete constraint conservation conditions, not as fundamental laws.

6 Correspondence with Einstein Field Equations

General Relativity encodes gravitation through Einstein's field equations,

$$G_{\mu\nu} = 8\pi G T_{\mu\nu},$$

relating spacetime curvature to stress-energy.

In Pattern Field Theory, curvature is not defined on spacetime but on constraint geometry. When adjacency relations on the Allen Orbital Lattice are averaged over large scales, an effective metric tensor $g_{\mu\nu}^{\text{eff}}$ emerges, summarizing constraint adjacency density.

Stress-energy is replaced by a structural density tensor $\Sigma_{\mu\nu}$ encoding coheron population, basin occupancy, and constraint loss rate. At macroscopic scales, the effective equations take the form

$$G_{\mu\nu}^{\text{eff}} = \kappa \Sigma_{\mu\nu},$$

which is predictive-equivalent to Einstein's equations in all regimes where spacetime geometry is a valid approximation.

Gravitation therefore emerges as global constraint curvature rather than as a fundamental force.

7 Relation to Quantum Field Theory

Quantum Field Theory treats fields as operator-valued distributions defined on spacetime, subject to quantization rules and commutation relations.

Pattern Field Theory does not quantize fields. Quantum behavior arises when constraint geometry is probed near basin boundaries, where accessibility changes discretely rather than smoothly.

The quantum wavefunction ψ corresponds to a statistical descriptor of PAL-compatible configuration ensembles. Expectation values

$$\langle \mathcal{O} \rangle$$

arise as averages over admissible reconfiguration pathways rather than as operator actions on Hilbert space vectors.

Superposition reflects simultaneous accessibility of multiple configuration paths. Interference arises from constraint competition near saturation thresholds. Apparent probabilistic outcomes result from structural exclusion under measurement coupling, not from intrinsic randomness.

8 Replacement of Force Unification Programs

Traditional unification programs seek to merge distinct fundamental forces into a single interaction framework.

Pattern Field Theory renders such programs unnecessary. There are no fundamental forces to unify. Electromagnetic, weak, strong, and gravitational interactions correspond to distinct regimes of constraint geometry and basin structure.

Differences among interaction types arise from variations in lattice depth, constraint loop topology, and basin saturation behavior. Coupling constants are therefore effective parameters, not universal invariants.

9 Predictive Scope and Physical Implications

Because interaction laws are emergent, Pattern Field Theory predicts systematic deviations from classical behavior in regimes where constraint geometry departs from smooth approximations.

These include:

- deviations from inverse-square laws near extreme basin saturation,
- modification of gravitational behavior at cosmological scales without invoking dark matter or dark energy,
- breakdown of quantum field approximations near constraint resolution limits.

These predictions arise structurally and provide clear empirical targets distinguishing the theory from Standard Model extensions and spacetime-based quantum gravity programs.

10 Summary of Structural Results

This paper has established that:

- Fields are coarse-grained descriptors of constraint accessibility.
- Forces are gradients in reconfiguration permissibility.

- Interaction laws are statistical regularities, not governing rules.
- Classical field theory emerges as a continuum approximation.
- Einstein field equations arise as effective macroscopic limits.
- Quantum field behavior reflects discrete constraint geometry.

11 Closure

Fields, forces, and interaction laws are not fundamental elements of reality in Pattern Field Theory. They are descriptive tools arising from how constraint geometry appears under limited resolution.

By replacing forces with structure and laws with accessibility, Pattern Field Theory resolves long-standing unification problems without introducing new particles, dimensions, or quantization schemes.

This completes the replacement of force-based physics with a purely structural interaction framework.

Document Timestamp and Provenance

This document is part of Pattern Field Theory (PFT) and the Allen Orbital Lattice (AOL). It defines fields, forces, and interaction laws as emergent descriptions of constraint geometry used by subsequent papers in the Expanded Depth Series.

© 2025 James Johan Sebastian Allen — Pattern Field Theory™ — patternfieldtheory.com. All rights reserved.