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Abstract

We introduce Coherence-Constrained Computation Theory (CCCT), a framework for
computational complexity grounded in geometric, prime-indexed, and phase-coherent con-
straints. We define the Allen Orbital Lattice Machine (AOL-Machine) and the Pattern
Alignment Lock (PAL), a structural coherence condition

∀u, v ∈ St, cos
(
θt(u) − θt(v)

)
≥ 1 − 1

pupv
.

We define deterministic and nondeterministic coherence classes PAOL and NPAOL and
show:

• PAOL ⊊ NPAOL: deterministic and nondeterministic coherence classes are strictly
separated;

• PAOL ⊊ P: not all polynomial-time Turing machines admit PAL-coherent simulations;
• Cobham’s invariance principle fails for PAL-coherent models: coherence behaves as a

non-simulatable computational resource.

This establishes coherence as a third axis of complexity, orthogonal to time and space,
and provides the first separations in a non-Cobham computational hierarchy.
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1 Introduction

Classical complexity theory is built on the idea that the class P captures all problems solvable
in “feasible time” on any reasonable model of computation. Cobham’s thesis [?] expresses two
linked intuitions:

1. P is the class of efficiently solvable problems.

2. Any two “reasonable” computational models can simulate each other with at most polyno-
mial overhead (invariance principle).

Standard models (multi-tape Turing machines, random-access machines, boolean circuits) are
mutually polynomially equivalent, so the invariance principle has appeared empirically justified.

In this paper we describe a computational model derived from Pattern Field Theory (PFT)
and the Allen Orbital Lattice (AOL), where coherence constraints are explicitly enforced at
every step of a computation. The model is:

• geometric (hexagonal lattice in the complex plane),

• prime-indexed (each vertex carries a distinct prime),

• phase-based (each active vertex carries a phase angle),

• coherence-constrained by PAL (Pattern Alignment Lock).

We define deterministic and nondeterministic coherence classes PAOL and NPAOL, show
PAOL ⊊ NPAOL, and demonstrate that PAOL is strictly contained in classical P, breaking
Cobham’s invariance in this setting.

2 The Allen Orbital Lattice Machine

We model computation on a hexagonal lattice with prime-indexed vertices and phase labels.

Definition 2.1 (Allen Orbital Lattice). Let ω = e2πi/3. The Allen Orbital Lattice is the infinite
hexagonal lattice

V = {m + nω : m, n ∈ Z} ⊂ C,

with edge set E connecting nearest neighbours in the usual hexagonal tiling.

Definition 2.2 (Prime Indexing). A prime indexing is a bijection

σ : V → P,

where P is the set of prime numbers. For v ∈ V we write pv = σ(v).

Definition 2.3 (AOL-Machine). An AOL-Machine is a tuple

M = (V, E, σ, θ0, δ, S0, G∗)

where:

• (V, E) is the Allen Orbital Lattice with prime indexing σ;

• θ0 : V → [0, 2π) is the initial phase assignment;

• δ is a local transition rule updating phases and the active set;

• S0 ⊂ V is the initial active set with |S0| = O(n) for input size n;
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• G∗ > 0 is a grounding threshold (coherence level required for acceptance).

Definition 2.4 (PAL-Coherent Active Set). For a finite S ⊂ V and a phase assignment
θ : V → [0, 2π) we say that S is PAL-coherent if

∀u, v ∈ S, cos
(
θ(u) − θ(v)

)
≥ 1 − 1

pupv
.

Definition 2.5 (Computation of an AOL-Machine). A computation of M on input x ∈ {0, 1}n

is a finite sequence
(St, θt)T

t=0

such that:

1. S0 is determined by x and |S0| = O(n);

2. for each t, the active set changes by at most one vertex:

|St+1 ∆ St| ≤ 1,

where ∆ denotes symmetric difference;

3. θt+1 is obtained from θt under the local rule δ;

4. St is PAL-coherent for all t = 0, . . . , T .

We say that the computation accepts if the final active set ST is grounded in the sense that
a coherence functional C(ST ) (for example a sum of cosine terms over edges inside ST ) exceeds
G∗.

3 Coherence-Constrained Complexity Classes

We now define deterministic and nondeterministic coherence classes induced by AOL-Machines.

Definition 3.1 (Deterministic Coherence Class PAOL). A language L ⊆ {0, 1}∗ is in PAOL
if there exists a deterministic AOL-Machine M and a constant k ≥ 1 such that, for every input
x of length n,

• the computation (St, θt)T (n)
t=0 is PAL-coherent at every step,

• T (n) = O(nk),

• M accepts x iff x ∈ L.

Definition 3.2 (Nondeterministic Coherence Class NPAOL). A language L ⊆ {0, 1}∗ is in
NPAOL if there exists a nondeterministic AOL-Machine M and a constant k ≥ 1 such that,
for every input x of length n,

• the computation branches into a finite set of PAL-coherent paths {(S(b)
t , θ

(b)
t )Tb

t=0}b,

• each branch has length Tb = O(nk),

• x ∈ L iff there exists at least one accepting branch (grounded final state).

Classical P is defined as usual in terms of deterministic Turing machines.
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4 Separation of PAOL and NPAOL

We now show that deterministic and nondeterministic coherence classes are strictly separated.

Lemma 4.1 (Antipodal Exclusion). Let v ∈ V be fixed and let θ(0), θ(1) ∈ [0, 2π) encode two
logical states for v with

|θ(0) − θ(1)| = π (mod 2π).

Then no PAL-coherent active set S can contain both (v, θ(0)) and (v, θ(1)) simultaneously.

Proof. If both states are present, there exist u = v and w = v with phase difference π. Then

cos(θ(0) − θ(1)) = cos(π) = −1.

For any finite primes pu, pv, we have

1 − 1
pupv

> −1,

so the PAL inequality
cos(θ(0) − θ(1)) ≥ 1 − 1

pupv

is violated. Thus S cannot be PAL-coherent.

Theorem 4.1. PAOL ⊊ NPAOL.

Proof. We show that 3-SAT lies in NPAOL but not in PAOL.

(1) 3-SAT is in NPAOL. Given a 3-SAT instance φ with n variables, a nondeterministic
AOL-Machine can, at time t = 0, branch into 2n paths, each corresponding to one complete
assignment of the n variables. Along each branch, the machine evaluates the clauses of φ using
phase shifts associated to literals. Each branch runs in time O(n) and preserves PAL-coherence
by construction of the phase increments. If a branch satisfies all clauses, the final active set
is grounded. Hence φ is satisfiable if and only if at least one branch accepts. Thus 3-SAT
∈ NPAOL.

(2) 3-SAT is not in PAOL. Assume, for contradiction, that 3-SAT is in PAOL. Then there
exists a deterministic AOL-Machine M and k ≥ 1 such that, for every formula φ with n variables,
M decides satisfiability in O(nk) PAL-coherent steps.

Consider a family of formulas φn on n variables constructed so that, in the worst case, φn

has at least 2n/4 distinct satisfying assignments. Let s be one satisfying assignment and u be
another assignment that differs from s in at least one variable xi.

If the machine is to decide satisfiability deterministically, its single coherent cascade must, at
some point, encode enough information to distinguish s from assignments that fail to satisfy φn.
Under a natural encoding of bit values by antipodal phases at vi (for example 0 7→ 0, 1 7→ π),
Lemma ?? implies that no PAL-coherent active set can contain the local states corresponding to
both truth values at xi simultaneously.

Thus, for any time t, the active set St can encode at most one complete assignment for
the variables, if antipodal encoding is used for bits. A single PAL-coherent cascade therefore
cannot represent or traverse a set of assignments of size exponential in n while maintaining PAL-
coherence at each step. This contradicts the requirement that M deterministically distinguish
satisfiable from unsatisfiable instances in polynomial time. Hence 3-SAT /∈ PAOL.

Combining (1) and (2), we conclude that PAOL ⊊ NPAOL.
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5 PAOL Compared to Classical P

We now compare PAOL to the classical class P.

Lemma 5.1 (AOL-Machine to Turing Machine Simulation). Any AOL-Machine computation
of length T can be simulated by a deterministic Turing machine in time O(T 2 log T ).

Proof. A Turing machine can maintain an explicit list of active vertices St (with |St| ≤ T ) and
their phases θt(v), stored to O(log T ) bits of precision. Each time step updates at most one
vertex in St and applies local phase updates according to δ. PAL-coherence can be checked by
scanning all pairs in St, which is O(|St|2) = O(T 2) comparisons. Prime indices pv up to π−1(T )
can be precomputed or generated on demand. The resulting simulation time is O(T 2 log T ).

Theorem 5.1. PAOL ⊊ P.

Proof. First, PAOL ⊆ P follows from Lemma ??: any language decided by an AOL-Machine in
polynomially many PAL-coherent steps can be decided by a Turing machine in polynomial time.

To show that the inclusion is strict, consider the following deterministic Turing machine M
on input 1n:

Parity Writer.

For i = 1 to n: write bit bi = i mod 2 into tape cell i. Output the parity of ∑
i bi.

This machine runs in time O(n2) and so defines a language in P.
Suppose for contradiction that there is an AOL-Machine M that simulates M in PAOL, i.e.

in polynomially many PAL-coherent steps. Under a direct encoding where the value of tape cell
i is stored as a phase θ(vi) with 0 and π representing the two bit values, the final configuration
requires that, for adjacent cells i and i + 1,

θ(vi+1) = θ(vi) + π (mod 2π)

whenever bi+1 ≠ bi. In particular, for an alternating pattern, we get phase differences of π
between neighbours.

For any two vertices u, v with phase difference π, PAL-coherence fails, since

cos(θ(u) − θ(v)) = cos(π) = −1 < 1 − 1
pupv

.

Thus no PAL-coherent active set can simultaneously encode the full alternating pattern of bits
in this simple representation.

More generally, any encoding that uses antipodal phase differences to represent distinct
logical states faces the same obstruction: a single PAL-coherent active set cannot realise all the
required antipodal transitions at once. Hence M has no PAL-coherent AOL realisation that
preserves the tape-level structure in a single coherent cascade. Therefore M is in P but not in
PAOL, and PAOL ⊊ P.

6 Coherence Collapse and Cobham’s Invariance

We summarise the geometric obstruction underlying the previous section.

Theorem 6.1 (Coherence Collapse). Any computation that requires realising antipodal phase
differences (π) between logically related states in a single active region cannot be implemented by
a PAL-coherent AOL-Machine.
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Proof. If two states in the same active set St differ by a phase of π, then their cosine is −1. For
any finite primes pu, pv we have 1 − 1/(pupv) > −1, so the PAL-inequality

cos
(
θt(u) − θt(v)

)
≥ 1 − 1

pupv

cannot hold. Therefore such a computation would violate PAL-coherence and cannot be carried
out by an AOL-Machine constrained to PAL-coherent active sets.

Cobham’s invariance principle asserts that any two “reasonable” computational models can
simulate each other with polynomial overhead. In our setting we obtain:

Corollary 6.1 (Failure of Cobham Invariance for PAL-Coherent Models). Cobham’s invariance
principle does not hold between the AOL-Machine model and classical Turing machines. In
particular, PAOL and P are not mutually polynomially equivalent.

Proof. By Lemma ??, Turing machines can simulate PAL-coherent AOL-Machines with poly-
nomial overhead, so PAOL ⊆ P. By Theorem ??, there are languages in P that do not lie
in PAOL. Hence there is no polynomial-time simulation from all of P into PAL-coherent
AOL computations. Mutual polynomial simulation fails, so Cobham’s invariance fails in this
setting.

7 The CCCT Hierarchy

The results above define a new hierarchy of complexity classes under coherence constraints. At
the level of deterministic computation we have

P ⊋ PAOL ⊇ PAOL ∩ L,

where L denotes logarithmic space in the classical model, and at the level of coherence-constrained
nondeterminism we have

NPAOL ⊋ PAOL.

Time and space remain classical resources, but coherence appears as a third independent
axis. Informally:

• Time: number of symbolic steps (T (n)).

• Space: number of symbols or cells used.

• Coherence: structure of admissible phase relations under PAL.

In this picture, PAOL represents efficiently computable problems under strict coherence
constraints, while P represents efficiently computable problems without coherence restrictions.

8 Provenance

All concepts introduced in this paper originate in the Pattern Field Theory programme developed
by the author in 2025. For clarity, we list the main definitions and results with their origin:

• Allen Orbital Lattice and AOL-Machine model (Allen, 2025).

• Pattern Alignment Lock (PAL) coherence condition (Allen, 2025).

• Coherence-constrained classes PAOL and NPAOL (Allen, 2025).
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• Coherence Collapse Theorem (Allen, 2025).

• Violation of Cobham invariance in PAL-coherent models (Allen, 2025).

This document is intended as the foundational reference for Coherence-Constrained Compu-
tation Theory (CCCT).

9 Conclusion

We have defined a coherence-constrained model of computation on the Allen Orbital Lattice,
introduced the classes PAOL and NPAOL, and proved the strict separations

PAOL ⊊ NPAOL and PAOL ⊊ P.

These results show that coherence constraints impose structural limitations on computation that
are not captured by classical models and that Cobham’s invariance principle does not extend to
PAL-coherent computation.

In this framework, computation is not only about symbolic transitions and resource bounds,
but also about the geometry of coherence in prime-indexed phase space.
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