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Abstract

Pattern Field Theory (PFT) describes all physical structure as patterns evolving on
the Allen Orbital Lattice (AOL), a prime–indexed orbital curvature lattice. This raises an
immediate question: does the AOL introduce a fixed background, or is it itself a gauge
choice with no direct physical content?

In this paper we answer that question by showing that the Allen Orbital Lattice is com-
pletion equivalence. Any two admissible prime–indexed AOL completions are related by a
Phase Alignment Lock (PAL) diffeomorphism that preserves all PFT operators and observ-
ables. Physical quantities depend only on PAL–coherent fluxes and curvature assignments,
not on the particular completion or ghost–layer ordering. We define zero–geometry determi-
nation as the requirement that observables be invariant under PAL–diffeomorphisms. Under
this requirement, the AOL acts as a gauge structure rather than a physical background.

The Lagrange–hex projection of the
√

1–
√

6 system is identified as a minimal ghost kernel
invariant under PAL–diffeomorphisms. We show how this kernel underpins background
independence and links diffeomorphism invariance in general relativity (GR) and gauge
redundancy in quantum field theory (QFT) to a single AOL completion equivalence. This
completes the background–independent formulation of Pattern Field Theory and clarifies
how GR and QFT arise as infrared projections of one discrete, zero–geometry substrate.
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1 Introduction
A central demand on any candidate unification of physics is background independence. General
relativity (GR) is built on the idea that spacetime geometry is not fixed; the metric is dynamic
and responds to matter and energy. Quantum field theory (QFT), by contrast, is normally for-
mulated on a fixed background spacetime. This mismatch has obstructed attempts to quantise
gravity and to derive a single framework that contains both GR and the Standard Model.

Pattern Field Theory (PFT) starts from a discrete substrate: the Allen Orbital Lattice
(AOL). The lattice is prime–indexed and carries curvature weights, phases and recursion struc-
ture. Dynamics are implemented by event cascades constrained by Phase Alignment Lock
(PAL), which enforces flux neutrality on prime–indexed faces. Continuum field theories arise
as infrared projections of this discrete structure.

The presence of a lattice raises an immediate concern. A fixed lattice can look like a fixed
background. If the AOL selected a preferred geometry, it would conflict with the principle of
background independence and would risk reintroducing the same problems that GR originally
solved in the continuum setting. The aim of this paper is to show that this does not happen.
The AOL is not a fixed background; it is a gauge choice within a larger completion equivalence
class.

We make this precise by:

• defining admissible AOL completions and PAL–diffeomorphisms,

• introducing zero–geometry determination as invariance under PAL–diffeomorphisms,

• proving that all physical operators and observables are invariant under completion changes,

• identifying the Lagrange–hex
√

1–
√

6 ghost kernel as a minimal invariant structure.

The result is that the Allen Orbital Lattice is completion equivalence. Different completions
are related by PAL–diffeomorphisms that leave all physical content unchanged. The AOL plays
the role of a coordinate system in discrete form; changing completion is analogous to changing
coordinates, with no new physics. Geometry arises from PAL–coherent curvature assignments,
not from the choice of completion.

This paper is organised as follows. In Section ?? we review background dependence issues in
existing approaches. In Section ?? we summarise the structure of the AOL in the PFT frame-
work. Section ?? defines zero–geometry determination. Section ?? introduces completions and
PAL–diffeomorphisms. In Section ?? we state and prove the main completion–equivalence
theorem. Section ?? explains the role of the Lagrange–hex ghost kernel. Section ?? dis-
cusses consequences for GR, QFT and unification. Section ?? compares PFT to other back-
ground–independent proposals. Section ?? gives a brief outlook. Appendices provide a glossary,
internal bibliography and mathematical notes.

2 Background Dependence in Existing Frameworks
This section summarises background dependence issues in the main families of existing theories.

2.1 General relativity

General relativity is manifestly background–independent at the continuum level. The metric
tensor gµν is dynamical and satisfies the Einstein equations

Gµν = 8πTµν ,
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with Gµν the Einstein tensor and Tµν the stress–energy tensor. Diffeomorphism invariance
encodes the statement that coordinates carry no direct physical meaning; physical observables
are invariant under smooth reparameterisations of the manifold.

However, attempts to quantise GR perturbatively almost always proceed by expanding
around a fixed background metric, such as Minkowski or a chosen classical solution. This
reintroduces a preferred structure and breaks manifest background independence.

2.2 Quantum field theory

Conventional QFT assumes a fixed background spacetime. Fields are defined on a manifold
with a given metric, and locality refers to that metric. Even when curved backgrounds are
used, they are usually treated as external data rather than as dynamical variables.

The success of QFT in particle physics is tied to this construction, but the price is structural:
background independence is not built in. There is no general mechanism in standard QFT that
enforces invariance under changes of background geometry.

2.3 Lattice and discrete approaches

Lattice gauge theory and related discrete methods place fields on fixed lattices in order to
regulate divergences and perform numerical calculations. These lattices are usually regular
grids, such as hypercubic arrays in Euclidean signature.

Such lattices are not background–independent. They fix a preferred discrete geometry,
including directions and scales. While continuum limits can reduce explicit lattice artefacts,
the underlying construction distinguishes particular frames and coordinate systems.

Other discrete approaches, such as causal sets or some tensor network models, introduce
combinatorial structures that are closer in spirit to background independence, but often still
require an embedding or a choice of growth rule that plays a similar role to a background.

2.4 Quantum gravity proposals

Candidate quantum gravity theories, such as loop quantum gravity or string theory, each address
background independence in their own way. Loop quantum gravity seeks a background–free rep-
resentation but faces challenges in relating spin network states to a unique emergent geometry.
String theory often begins on fixed backgrounds and then promotes moduli to dynamic variables;
full background independence is an open task at the structural level.

In summary, a structurally complete unification should treat background independence as a
fundamental requirement. Pattern Field Theory addresses this at the discrete level by treating
the Allen Orbital Lattice as a gauge structure subject to completion equivalence.

3 Allen Orbital Lattice Structure
This section summarises the objects of the Allen Orbital Lattice used in this paper.

3.1 Sites, edges and faces

The Allen Orbital Lattice (AOL) is a discrete orbital–curvature lattice with:

• a set of sites x representing orbit centres,

• oriented edges (x, x + µ̂) labelled by direction indices and carrying curvature weights and
phase increments,

• faces Sp labelled by primes p, each with an oriented boundary ∂Sp,
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• higher–dimensional cells encoding recursion and cascades.

Curvature is encoded by plaquette sums of edge contributions. For a face Sp, one writes

F (∂Sp) =
∑

e∈∂Sp

ω(e), (1)

where ω(e) includes both amplitude and phase information.

3.2 Phase Alignment Lock

Phase Alignment Lock (PAL) is the core coherence rule in PFT.

Definition 1 (Phase Alignment Lock). A configuration on the AOL is PAL–coherent if, for
every prime–indexed face Sp,

∇ · F (∂Sp) = 0, (2)

where ∇· is the discrete divergence operator on the lattice. PAL enforces exact flux neutrality
on all prime–labelled faces.

PAL constraints apply to all sectors: curvature flux, pattern transport and interaction cas-
cades. They enforce discrete conservation and remove many configurations that would produce
divergences in a continuum description.

3.3 Event cascades and operators

Dynamics in PFT are implemented by event cascades: sequences of PAL–coherent branching
events on the AOL. An initial pattern configuration ϕ0 evolves through a series of local trans-
formations to a set of descendants {ϕi}, represented as a rooted tree embedded in the lattice.

Operators such as transport T , curvature–weighted derivatives C, recursion operators R,
cross–network couplings N and global evolution operators G act on PAL–stable configurations.
The operator algebra is closed under commutators when restricted to PAL–coherent states.

For the purposes of this paper, the detailed definitions of these operators are not required;
only the fact that they act on AOL configurations and that physical observables are expressed
in terms of PAL–coherent fluxes and curvature assignments.

4 Zero–Geometry Determination
The goal of this section is to formalise what it means for PFT to be background–independent
at the level of the AOL.

4.1 Physical observables

In PFT, physical observables are functions of PAL–coherent configurations. Examples include:

• flux patterns through collections of prime–indexed faces,

• integrated curvature over regions of the AOL,

• cascade–derived amplitudes for transitions between pattern states,

• infrared projections such as effective metrics and field configurations.

Two configurations that produce the same values for all observables are physically indistin-
guishable.
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4.2 Zero–geometry configurations

Intuitively, a theory has zero–geometry determination if physical observables do not depend on
how the underlying lattice is completed, only on relational structure encoded by PAL–coherent
fluxes and curvature.

Definition 2 (Zero–geometry determination). A set of observables O in PFT satisfies zero–geometry
determination if, whenever two AOL completions AOL1 and AOL2 are related by a PAL–diffeomorphism
(defined in Section ??), all observables agree:

O[AOL1] = O[AOL2] for all O ∈ O. (3)

A theory is zero–geometry determined if its full set of physical observables satisfies this condition.

Zero–geometry determination is the discrete analogue of diffeomorphism invariance. In-
stead of smooth coordinate transformations on a manifold, one considers PAL–preserving maps
between AOL completions. Physical quantities must be invariant under these maps.

5 AOL Completions and PAL–Diffeomorphisms
We now define what is meant by an AOL completion and by a PAL–diffeomorphism between
completions.

5.1 Completions

The Allen Orbital Lattice can be specified at different levels of detail. A partial description
may fix:

• the prime index set used to label faces,

• local adjacency relations,

• generic constraints on curvature and phases.

A completion fills in all degrees of freedom consistent with these partial specifications and with
PAL coherence.

Definition 3 (AOL completion). An AOL completion is a fully specified prime–indexed or-
bital–curvature lattice, including:

• a set of sites, edges and faces with adjacency relations,

• assignments of prime labels to faces Sp,

• curvature and phase assignments on edges and faces,

• recursion and cascade structure,

such that PAL holds for all prime–indexed faces.

Different completions may correspond to different orderings of ghost layers, different embed-
dings of local configurations or different choices of recursion labelling, as long as they satisfy
the same global PAL and structural constraints.
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5.2 PAL–diffeomorphisms

A PAL–diffeomorphism is a map between completions that preserves PAL coherence and rela-
tional structure.

Definition 4 (PAL–diffeomorphism). Let AOL1 and AOL2 be two AOL completions. A PAL–diffeomorphism
is a bijective map

D : AOL1 → AOL2 (4)

between their cells (sites, edges, faces, higher cells) such that:

1. Adjacency is preserved. If two cells are adjacent in AOL1, their images are adjacent in
AOL2.

2. Prime labels are preserved up to relabelling within allowed symmetry classes. Faces with
prime label p are mapped to faces with an allowed image under prime symmetries.

3. PAL–coherent configurations are mapped to PAL–coherent configurations. If a configuration
is PAL–coherent on AOL1, its image under D is PAL–coherent on AOL2.

4. Operator action is preserved. For each PFT operator O, the pull–back satisfies D∗O = O
on PAL–coherent configurations.

PAL–diffeomorphisms generalise coordinate transformations to the discrete, prime–indexed
lattice setting. They reorder ghost layers, relabel curvature configurations and permute local
structures while leaving physical content invariant.

6 Main Completion–Equivalence Theorem
We now state and prove the central result.

Theorem 1 (AOL completion equivalence). Let AOL1 and AOL2 be two admissible AOL com-
pletions that share the same prime index set, adjacency constraints and PAL rules. Then there
exists a PAL–diffeomorphism D : AOL1 → AOL2 such that:

D∗O = O (5)

for all PFT operators O acting on PAL–coherent configurations, and consequently all physical
observables are identical:

O[AOL1] = O[AOL2]. (6)

Proof sketch. The argument proceeds in three steps.
Step 1: Local matching of prime–indexed faces. By assumption, AOL1 and AOL2

share the same prime index set and adjacency constraints. For each face S
(1)
p in AOL1 with prime

label p, there exists a corresponding face S
(2)
p or a face related by an allowed prime symmetry

in AOL2. Construct a bijection between faces that respects these labels and adjacency.
Step 2: Extension to edges, sites and higher cells. Use the face correspondence to

extend the map to edges by requiring that edges bounding matched faces are mapped corre-
spondingly, preserving orientation and adjacency. Sites are then determined as endpoints of
mapped edges. Higher–dimensional cells follow similarly. This yields a bijection between all
cells that preserves adjacency and prime structure.

Step 3: Preservation of PAL coherence and operator action. Consider a PAL–coherent
configuration on AOL1. PAL requires ∇ · F (∂S

(1)
p ) = 0 for all prime–indexed faces. Under the

map constructed in Steps 1 and 2, each face S
(1)
p is mapped to a face S

(2)
p of the same type.

5 | © 2025 James Johan Sebastian Allen — Pattern Field Theory — patternfieldtheory.com



Edge contributions are mapped in a way that preserves oriented sums around faces. Therefore,
if PAL holds on AOL1, it holds on AOL2 for the image configuration.

The PFT operators O are defined in terms of local differences, curvature weights and phase
increments on the lattice. Since the map preserves adjacency, prime structure and PAL coher-
ence, it preserves the algebraic relations used to define these operators. It follows that D∗O = O
on PAL–coherent configurations.

Observables are constructed from operator actions on PAL–coherent states, so O[AOL1] =
O[AOL2] for all physical O.

Remark 1. The theorem asserts that the choice of completion is a gauge choice. All completions
satisfying the same structural constraints and PAL rules are physically equivalent, connected by
PAL–diffeomorphisms.

7 Lagrange–Hex Ghost Kernel
The previous section established completion equivalence in general form. In this section we
identify a minimal invariant structure: the Lagrange–hex ghost kernel.

7.1 Lagrange–hex projection

The Lagrange–hex projection organises minimal displacement modes of the AOL into classes
associated with distances

√
n. The first six classes correspond to

√
1,

√
2,

√
3,

√
4,

√
5,

√
6. Each

class defines a layer of permitted moves and interactions.
These layers are not arbitrary. They reflect the combinatorial structure of the lattice and

the way curvature and phases accumulate under PAL.

7.2 Definition of the ghost kernel

Definition 5 (Lagrange–hex ghost kernel). The Lagrange–hex ghost kernel K is the set of
displacement classes

K = {
√

n | n = 1, . . . , 6} (7)

together with their adjacency and curvature profiles, regarded modulo PAL–diffeomorphisms.

The kernel encapsulates the minimal unit of ghost–layer structure required to reproduce
local PFT dynamics in the infrared limit.

7.3 Invariance under PAL–diffeomorphisms

Lemma 1 (Kernel invariance). Let D : AOL1 → AOL2 be a PAL–diffeomorphism. Then

D(K1) = K2, (8)

where Ki is the ghost kernel defined on AOLi.

Proof sketch. The Lagrange–hex construction is combinatorial: it depends only on adjacency,
displacement counts and PAL–compatible curvature assignments. PAL–diffeomorphisms pre-
serve adjacency and PAL coherence. Therefore, the set of displacement classes and their local
curvature structures are preserved up to relabelling. The set of six primary layers is mapped to
itself. Hence D sends K1 to K2.

The ghost kernel is thus an intrinsic feature of the PFT structure, independent of completion.
It can be used as a canonical unit for comparing different embeddings and for defining effective
field descriptions.
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8 Consequences for GR, QFT and Unification
In this section we summarise how completion equivalence and zero–geometry determination
address the background–independence issues discussed in Section ??.

8.1 Background independence in PFT

Theorem ?? and Definition ?? together imply that physical observables in PFT are invariant
under PAL–diffeomorphisms. The lattice is not a fixed background with physical meaning; it is
a representative of an equivalence class of completions.

Geometry in PFT is not encoded in the bare structure of the AOL, but in PAL–coherent
curvature assignments and associated infrared projections. As a result, there is no preferred
completion, and background independence is realised at the discrete level.

8.2 GR as PAL–induced metric sector

Previous work in PFT shows how Einstein–like equations emerge as infrared projections of
PAL–constrained curvature dynamics. In that construction, the metric gµν is defined as an
effective phase–gradient of pattern fields, and the Einstein tensor arises from discrete curvature
flux neutrality over the AOL.

Completion equivalence strengthens this picture. The induced metric does not depend on the
particular completion chosen, only on PAL–coherent curvature data modulo PAL–diffeomorphisms.
This is the discrete analogue of diffeomorphism invariance in GR.

8.3 QFT as PAL–constrained cascade sector

Similarly, previous work has shown that the Standard Model gauge structure and scattering
amplitudes emerge from PAL–constrained cascades on the AOL. Gauge groups arise from local
connectivity and PAL constraints; scattering amplitudes are sums over PAL–admissible cascade
trees.

Completion equivalence ensures that these structures are independent of the chosen com-
pletion. Ghost–layer reordering and local relabellings correspond to gauge transformations and
coordinate changes in the infrared field description. QFT is not tied to a particular lattice
embedding.

8.4 Unified gauge structure

Completion equivalence also unifies geometric and internal gauge freedoms. PAL–diffeomorphisms
act on:

• lattice completions (geometry sector),

• ghost–layer orderings and internal labels (gauge sector).

Both aspects are handled by the same equivalence relation. This is the discrete PFT analogue
of treating diffeomorphisms and gauge transformations within a single fibre–bundle framework
in continuum field theory.

9 Comparison with Other Approaches
It is useful to place the PFT completion–equivalence structure alongside other attempts at
background independence.
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9.1 Continuum GR

General relativity implements background independence at the continuum level through dif-
feomorphism invariance. PFT implements a discrete analogue through PAL–diffeomorphisms.
Both share the idea that coordinates or completions carry no direct physical meaning.

9.2 Lattice gauge theory

Standard lattice gauge theory uses a fixed lattice and does not attempt to identify an equivalence
class of completions. Artefacts of the lattice can affect results until careful continuum limits
are taken. PFT replaces this by an intrinsic equivalence class at the discrete level.

9.3 Loop quantum gravity and spin networks

Approaches based on spin networks and spin foams seek to quantise geometry in a back-
ground–independent way. However, the mapping from combinatorial graphs to continuum
geometries is nontrivial and often ambiguous. PFT differs by embedding both geometry and
matter into one prime–indexed lattice with PAL constraints, and by identifying a clear equiva-
lence relation between completions.

9.4 String theory and related models

String theory typically begins with a chosen background and then studies excitations and mod-
uli around it. While there are proposals for more background–independent formulations, the
standard constructions rely on specific geometries. PFT, by contrast, constructs geometry from
a single class of discrete substrates and enforces completion equivalence from the outset.

10 Discussion and Outlook
We have shown that the Allen Orbital Lattice is completion equivalence: different AOL comple-
tions satisfying the same structural constraints and PAL rules are related by PAL–diffeomorphisms
that leave all physical observables invariant. The lattice is a gauge choice, not a fixed back-
ground.

The key components are:

• PAL coherence, which enforces flux neutrality and constrains admissible configurations,

• AOL completions, which differ in ghost–layer orderings and local embeddings,

• PAL–diffeomorphisms, which relate completions without changing relational structure,

• the Lagrange–hex ghost kernel, which captures a minimal invariant unit of local structure.

As a result, PFT realises background independence at the discrete level. GR and QFT arise
as infrared projections of one zero–geometry framework. Coordinate choice and gauge choice
are both aspects of completion equivalence.

Future work includes:

• explicit classification of PAL–diffeomorphism groups for given prime sets,

• analysis of how completion equivalence constrains possible infrared geometries,

• exploration of whether completion equivalence imposes observable restrictions on cosmolog-
ical initial conditions or large–scale structure,
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• investigation of how completion equivalence interacts with renormalisation group flows in
PFT.

The main structural point is that the discrete substrate of Pattern Field Theory does not
reintroduce a background. Instead, it provides a controlled environment in which background
independence can be implemented and verified at the combinatorial level.
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Appendix A — Glossary of Terms and Acronyms
Pattern Field Theory (PFT) Unified framework in which all structure and dynamics are

described as patterns evolving on the Allen Orbital Lattice under Phase Alignment Lock
constraints.

Allen Orbital Lattice (AOL) Prime–indexed orbital–curvature lattice carrying sites, edges,
faces, curvature weights, phase data and recursion structure. It is the discrete substrate in
PFT.

Phase Alignment Lock (PAL) Coherence condition requiring exact flux neutrality on all
prime–indexed faces of the AOL. PAL enforces global phase compatibility and removes
non–conserving configurations.

Cross–Coherent Cascade Theory (CCCT) Branch of PFT that analyses cascades and co-
herence collapse across coupled networks and domains.

Completion A fully specified AOL configuration consistent with given structural constraints
and PAL. Different completions may differ in ghost–layer orderings or local embeddings.

PAL–diffeomorphism Bijective map between AOL completions that preserves adjacency,
prime structure, PAL coherence and operator action on PAL–coherent configurations.

Zero–geometry determination Property that physical observables are invariant under PAL–diffeomorphisms
between completions. It is the discrete analogue of diffeomorphism invariance.

Lagrange–hex projection Representation of the AOL that organises minimal displacement
modes into hexagonally structured layers labelled by distances

√
n.

Ghost layer Structured pattern of allowed lattice moves at a fixed displacement scale
√

n in
the Lagrange–hex projection.

Lagrange–hex ghost kernel Minimal set of displacement classes {
√

n | n = 1, . . . , 6} and
their local curvature and adjacency profiles, regarded modulo PAL–diffeomorphisms.

Background independence Requirement that physical observables do not depend on a fixed
background geometry or coordinate choice, but only on relational structure. Implemented in
PFT by zero–geometry determination.

General relativity (GR) Classical field theory of spacetime curvature described by the Ein-
stein equations. In PFT, GR arises as an infrared projection of PAL–constrained curvature
dynamics.

Quantum field theory (QFT) Framework describing particles and interactions as excita-
tions of fields on a spacetime background. In PFT, QFT arises as an infrared projection of
PAL–constrained cascades on the AOL.
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Appendix C — Notes on PAL–Diffeomorphism Structure
This appendix collects brief mathematical remarks on the structure of PAL–diffeomorphisms.

C.1 Group–like properties

The set of PAL–diffeomorphisms between AOL completions satisfying fixed structural con-
straints has group–like properties:

• Composition of two PAL–diffeomorphisms is again a PAL–diffeomorphism.

• The identity map is a PAL–diffeomorphism.

• Each PAL–diffeomorphism has an inverse that is also a PAL–diffeomorphism.

Thus PAL–diffeomorphisms form a group acting on the space of completions.

C.2 Orbits of completions

A completion orbit is the set of all completions reachable from a given completion by PAL–diffeomorphisms.
The completion–equivalence theorem implies that all completions in an orbit are physically in-
distinguishable. The physically relevant configuration space is the quotient of the space of
completions by the PAL–diffeomorphism group.

C.3 Relation to continuum diffeomorphisms

In the infrared limit, PAL–diffeomorphisms induce transformations on effective fields and met-
rics that match continuum diffeomorphisms. The discrete action on cells and curvature assign-
ments becomes a smooth reparameterisation at large scales.
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