Diagram for Allen Fractal Closure Law (AFCL) in Pattern Field Theory™

James Johan Sebastian Allen September 2025

1 Diagram: Binary Fractal Lattice Closure for Perfect Numbers

This diagram illustrates the Allen Fractal Closure Law (AFCL) within Pattern Field TheoryTM (PFTTM), where even perfect numbers are binary fractal closure counts in the π -particle lattice. For prime p with 2^p-1 a Mersenne prime, Perfect(p) = $\binom{2^p}{2} = 2^{p-1}(2^p-1)$ represents the total pairwise links among 2^p nodes (diamonds in DifferentiatTM geometry) arranged on nested rings, reflecting the fractal resonance of the Pi MatrixTM substrate.

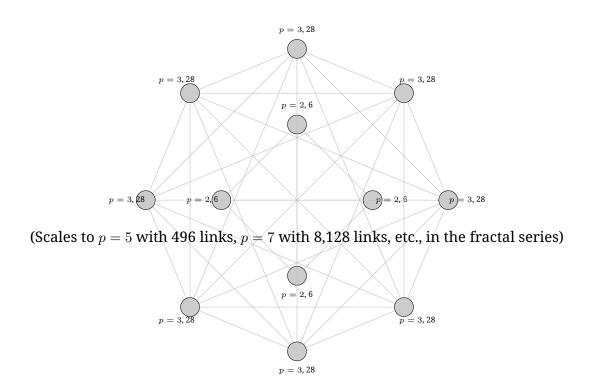


Figure 1: Binary fractal lattice closure for perfect numbers p=2 (6 links) and p=3 (28 links), with nested rings representing the π -particle lattice in PFTTM. Each ring's total pairwise links (light gray lines) equal the perfect number, illustrating the fractal resonance and structural invariance of the Pi MatrixTM substrate. Larger p values extend this pattern, aligning with physical and biological scales (e.g., 496 in superstring theory, 28-day cycles).