\begin{figure}[h!] \centering \begin{tikzpicture}[scale=2] % Radii of inner (central) and outer (duplex) hexagons \def\r{1.0} \def\R{1.6} % Inner hexagon vertices (central pi-matrix) \foreach \i/\p in {0/2,1/3,2/5,3/7,4/11,5/13}{ \node (c\i) at ({\r*cos(60*\i)},{\r*sin(60*\i)}) {$p_{\p}$}; } % Outer hexagon vertices (duplex layer) \foreach \i/\p in {0/17,1/19,2/23,3/29,4/31,5/37}{ \node (d\i) at ({\R*cos(60*\i)},{\R*sin(60*\i)}) {$p_{\p}$}; } % Inner hexagon edges \foreach \i in {0,...,5}{ \pgfmathtruncatemacro{\j}{mod(\i+1,6)} \draw (c\i) -- (c\j); } % Outer hexagon edges \foreach \i in {0,...,5}{ \pgfmathtruncatemacro{\j}{mod(\i+1,6)} \draw (d\i) -- (d\j); } % Duplex links between inner and outer vertices \foreach \i in {0,...,5}{ \draw[dashed] (c\i) -- (d\i); } \end{tikzpicture} \caption{Allenium duplex chamber: central $\pi$-matrix hexagon and duplex layer filled by the first twelve primes.} \end{figure}